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In this paper, an analytical model is proposed to predict lateral vibration of a drillstring in
a vertical well. The effect of parameters, such as stiffness of spring, average weight on bit
(WOB), amplitude of fluctuating WOB and so on, on the dynamic stability of the drillstring
is discussed. It is found that the interaction between the drillstring and drilling mud has a
great influence on drillstring buckling and dynamics. For constant drilling pressure, the mud
flow rate stabilizes the drillstring under certain conditions, but the fluctuating WOB drives
the drillstring parametric resonance.
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1. Introduction

In the course of drilling operation, the movement of the drillstring is limited to a narrow well-
bore, and the forces exerted on the drillstring are extremely complex. Under its own gravity,
together with the interaction of the weight on bit (WOB) and drilling mud, the drillstring may
lose stability. It is characteristic that the amplitude of drillstring lateral deflection increases
monotonically and intense collision between the drillstring and borehole wall will occur. It is an
important cause of premature failure of the drillstring and deterioration of the well trajectory
(Ghasemloonia et al., 2013).
The drillstring can be seen as a pipe conveying fluid that flows inside and outside the pipe,

which is constrained by a wellbore. The dynamics of fluid-conveying pipes has been of consid-
erable interest in the world (Wang et al., 2010; Päıdoussis et al., 2008). Since the diameter is
much smaller than its length, the pipe is usually simplified to be an Euler-Bernoulli beam. Based
on stability analysis of pipes with steady flow (Päıdoussis and Issid, 1974), the impact of the
flow rate pulsation on stability has attracted widespread attention. Panda and Kar (2008) took
the amplitude and frequency detuning of harmonic velocity perturbation as control parameters,
and investigated bifurcation of pipes with simply supported ends as well as the effect of internal
resonances on dynamic responses using the method of multiple scales. Łuczko and Czerwiński
(2015) applied the Galerkin method and the Floquet theory to parametric vibrations of flexible
hoses excited by a pulsating fluid flow, in which both parametric resonance ranges and regions
of an increased vibration level were discussed. Nonlinear dynamics of simply supported pipes
that conveyed pulsating fluid and were constrained by cubic springs was investigated by Wang
(2009), who paid more attention to the system with a higher mean velocity. The cumulative
effect of geometric and constrained nonlinearity was also discussed. Wang (2012) investigated
buckling and flutter instabilities of supported fluid-conveying pipes subjected to distributed fol-
lower forces through the Galerkin method. Ni et al. (2015) worked on nonlinear dynamics of
a cantilevered pipe conveying fluid interacting with two support walls on both sides via the
Galerkin method and the fourth-order Runge-Kutta method, where the interaction force was
modeled by a trilinear spring. In general, dynamic models of fluid-conveying pipes include only
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the coupling effect between the pipe and internal fluid, and length of the pipe is far less than
that of the oil drilling pipe. Therefore, dynamics of the pipe conveying fluid is different from that
of a very slender drillstring system with internal and external drilling fluids as well as drilling
loads.

For a pipe string constrained simultaneously by internal and external fluid, Päıdoussis et
al. (2008) generalized the study of the tubular cantilever conveying fluid to an idealized flow-
-powered drillstring-like system with a floating drill-bit. The outer diameter and length of the
drillstring were 0.5m and 1000m, respectively, and the influence of the internal and annular
flow of the drilling fluid on system stability was discussed. Qian et al. (2008) studied dynamics
of a drillstring-like system under a counterflush drilling process in which the drilling fluid was
pumped down in an annular region and flowed axially upwards inside the pipe. Tang et al. (2018)
studied dynamic stability of lateral vibration of a tubing string in flowing production. Abdelbaki
et al. (2019, 2020) investigated nonlinear transverse vibration for a hanging cantilevered pipe
with fully-confined external flow and a partially-confined external flow. Comparing with the real
drilling system, the drillstring-like system did not include the downhole WOB, and the lateral
size was much larger. It results in a big difference in stiffness characteristics between these two
systems, and the axial load at the bottom is ignored.

The drillstring vibration is divided into three vibration forms, such as lateral, axial and tor-
sional vibration, and the drillstring can undergo a coupled state of vibration. But the lateral vi-
bration is typically the most severe form in the conventional drilling (Ghasemloonia et al., 2014).
The decoupled model can reveal well rich dynamical behavior and stability of a cylinder that is
similar to the drillstring with supported ends subjected to both internal and external axials flows.
The theoretical and experimental results were in good agreement (Hannoyer and Päıdoussis,
1978).

In the research of transverse vibration and stability of a drillstring, Euler-Bernoulli beam
theory is adopted for the most part. Dunayevsky et al. (1993) established a parametric reso-
nance model of a drillstring, and studied rapidly growing lateral vibrations triggered by WOB
fluctuations. Ren and Yao (2013) investigated dynamics of a compressed drillstring that was in
a horizontal well and simplified it to be a revolving pinned-pinned uniform beam. A period dou-
bling bifurcation of the system was presented through the Galerkin method and the multi-scales
method. Ghasemloonia et al. (2014) simulated coupled axial-transverse vibration of a drillstring
in vibration-assisted rotary drilling by the Galerkin method. Umbetkulova and Khajiyeva (2017)
studied nonlinear transverse vibrations caused by the action of a variable compressive load and
initial curvature of the drill string. Wen et al. (2019) designed a set of experimental devices
to simulate transverse vibrations of a rotary drill string in a highly deviated well. The drill-
string transverse vibration laws were studied quantitatively under different rotary speeds and
weight on bit (WOB). Mohammadzadeh et al. (2020) proposed fully coupled nonlinear vibra-
tion of composite drillstrings, which consisted of orthotropic layers. Fully coupled nonlinear
vibrations and modal analysis of the composite drillstrings due to various fiber orientations and
stacking sequences in different drilling conditions were studied. Due to complexity of the drill-
string dynamics, hydrodynamic forces from the drilling mud were not involved in the models
above.

Drilling mud flows downwards through the drill pipe internally to the bottom and goes up
with the cuttings produced while drilling to the surface in the annulus. Fluid-pipe interaction has
a great influence on transverse vibration and stability of the drillstring, nevertheless, papers in
this aspect are not too much. Zhang and Miska (2005) studied the effect of flow-pipe interaction
on drill pipe buckling and dynamics. Asghar Jafari et al. (2012) described drilling mud forces by
formulations delivered by Päıdoussis et al. (2008), and established the integral energy equations
by means of the Lagrangian approach to analyze lateral vibration and stability of the drillstring
system. In this model, the effect of drilling parameters on the neutral point and natural frequen-
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cies was discussed by the finite element method. Pei et al. (2013) modeled lateral vibration of
a vertical rotating drillstring conveying mud by rotor dynamics, in which the rotational inertia
and the gyroscopic effect were involved, and the effect of various parameters on stability of the
drillstring system was analyzed using the Galerkin method and eigenvalue analysis. All of these
models were focused on the constant WOB, and the drilling pressure fluctuation was ignored.

In this paper, an analytical model, which includes the interaction of the fluctuating WOB
and drilling mud that flows downwards inside the drillstring and upwards in the annular region,
is established to predict lateral vibration of the drillstring in a vertical well. This model is
discretized by Galerkin’s technique, and stability of the drillstring system with constant WOB
and fluctuating WOB is analyzed by generalized eigenvalue analysis and Bolotin’s method,
respectively. The effect of parameters, such as stiffness of spring, WOB, borehole size, flow rate
and density of drilling mud on stable zones is discussed.

2. The equation of motion

The drillstring in the vertical well is simplified to be a uniform pipe constrained by a fixed
hinge at well head and the movable hinge at the downhole. Here, the stabilizer is modeled as a
linear spring (Fig. 1). The origin of coordinates is located at the wellhead, and x-axis coincides
with both the centerline of the borehole and the initial configuration of the drillstring whose
lateral displacement is expressed as w(x, t). The drilling fluid, which is pumped downward to the
bottom in the central channel of the drill pipe, then flows upward to the ground in the annulus
formed by the drillstring and borehole wall after through a bit.

Fig. 1. Sketch of drillstring

In the drilling case of using a PDC bit or an impregnated diamond bit, drill pressure that does
not fluctuate significantly with time could be set as a constant value approximately. However,
the three-cone bit hits the bottom of the well with a single tooth and double-tooth alternately,
and causes the drillstring vibrating longitudinally. Generally, the WOB exerted on the three-cone
bit could be simplified as a harmonic excitation. Considering the fluctuating WOB, drillstring
gravity, hydrodynamic force due to the internal and external flow, the equation of lateral vibra-
tion of the drillstring can be deduced by means of force balances of small elements of the tubular
beam, internal fluid and external fluid (Päıdoussis et al., 2008)
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where l is the total length of the drillstring, EI is flexural rigidity, Mt is mass per unit length
of the drillstring whose inner and outer diameters are Di and Do, respectively. ρ is density of
the drilling fluid and Mf is mass per unit length of the fluid transported with a velocity Ui and
a cross section Af inside the drillstring. χ is the added mass coefficient for the annular flow and
defined as: χ = [(Dw/Do)

2+1]/[(Dw/Do)
2−1], where Dw is the inner diameter of the wellbore.

Dh, described as Dh = 4Ach/[π(Dw + D0)], is the hydraulic diameter of the annular channel
flow with a velocity Uo and a cross section Ach. Ui and Uo are related through the continuity
equation, Uo = AfUi/Ach. p and pµ cosωt are the constant and harmonic component of WOB,
respectively, where ω is the circular frequency that could be expressed by the rotation speed
N as ω = 3(2Nπ/60) approximately for the three-cone bit. pil and pol are fluid pressure inside
and outside the drillstring at the bottom hole, respectively. Cf is the viscous coefficient due to
the external axial flow. k is the viscous damping coefficient related to the circular frequency of
drillstring oscillation ω′ and shown as
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√
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where ν is the kinematic viscosity of the drilling fluid, xstab is location of the stabilizer, kstab is
the stiffness parameter of the stabilizer, δ(x) is the impulsive function, δ(x) = 1 if x = 0, and
δ(x) = 0 if x 6= 0.
Boundary conditions of this model are given by
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Substituting the expressions above into Eq. (2.1), the dimensionless form of the governing
equation is
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The dimensionless boundary conditions are

η(0, τ) =
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3. Methods of solution

Equation (2.3) could be discretized into ordinary differential equations by many methods. Com-
paring with the hybrid Galerkin-Fourier method and Differential Quadrature Method, the con-
ventional Galerkin method is used more widely for its simplicity and convenience of computation,
and for the problem at hand. The dimensionless displacement function of the drillstring model
could be expressed as

η(ξ, τ) = ΦqT (3.1)

where Φ = [φ1(ξ), φ2(ξ), . . . , φn(ξ)] is the vector of mode function of a simple-supported beam
and φi = sin iπξ, i = 1, 2, . . . , n; q = [q1(τ), q2(τ), . . . , qn(τ)] is the vector of generalized coordi-
nates. Substituting Eq. (3.1) into Eq. (2.3), and integrating over ξ from 0 to 1, one obtains

q̈+Cq̇+ (K+ Γµ cosωτB)q = 0 (3.2)

in which C, K and B are square matrices of the order n; C and K represent damping and
stiffness matrices, respectively. The elements of C, K and B are given by
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Based on the above model and methods, dynamic stability of the drillstring system will
be discussed in both cases of constant WOB (corresponding to drilling operation with PDC
bit or impregnated diamond bit) and harmonic WOB (corresponding to the three-cone bit),
respectively.
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4. Stability analysis under constant WOB

The drillstring system considered is a very slender beam with l = 1000m, Di = 101.6mm,
Do = 127mm, Dw = 241.5mm, Mt = 43.75 kg/m, E = 200GPa, ρ = 1200 kg/m

3,
ν = 10−6m2/s, xstab = 800m, and kstab = 0MN/m. The damping coefficient of the drilling
fluid is composed of the frictional damping coefficient Cf and the viscous damping coefficient k.
Cf could be chosen as a semi-empirical value of 0.0125 referring to (Päıdoussis et al., 2008).
k, which is related to the natural frequency of the system, could be determined by calculating
iteratively for each mode. Here, eigenvalue evolution will be presented to show stability of the
system.

4.1. Eigenvalue analysis

When the WOB keeps constant, that is µ = 0, Eq.(3.2) is simplified to

q̈+Cq̇+Kq = 0 (4.1)

whose solution could be written as: q = q exp(ωnτ), where q is an unknown vector of the
amplitude and ωn being complex frequency. Im(ωn) represents the natural frequency of the
system, and Re(ωn) is related to modal damping. Substituting q into Eq. (4.1) gives

(ω2nI+ ωnK+C)q = 0 (4.2)

where I is a unit square matrix of the order n. Equation (4.2) constitutes a generalized eigenvalue
problem and complex frequencies could be determined as a result. In the case of Im(ωn) = 0 the
system loses stability by divergence, while the case of Re (ωn)  0 and Im(ωn) 6= 0 corresponds
to flutter. Im(ωn) varies along with the flow velocity Ui and WOB p. It is called the critical
flow rate Ucr at which Im(ωn) decreases to zero from positive values. Similarly, the critical drill
pressure pcr, at which Im(ωn) dropped to zero from positive values, is also defined.

4.2. Effect of Galerkin modal truncation

For the problem at hand, the truncated number of Galerkin modal functions has a great
influence on calculation accuracy. Päıdoussis et al. (2008) pointed out that 40 or more eigen-
functions were necessary to achieve convergence for the drillstring-like system because of the
very large gravity effect. Qi and Hu (2011) studied the effect of Galerkin modal truncation on
natural frequencies of a cantilevered pipe conveying fluid. It was found that a low order mode
contained information of higher order modes, and the truncated number n exerted more influ-
ence on eigenvalues near the n-order. Since the amount of calculation increases exponentially
along with growth of the truncated number, the determination of a reasonable n is an impor-
tant prerequisite. Here, taking p = 65 kN as an example, we research relationships between the
complex frequencies ωn and internal flow Ui downwards in the drillstring by solving Eq. (4.2)
with different modal truncated numbers n, and present the results of the first four complex
frequencies in Fig. 2. As n increased, the curves for these four modes all converged. The results
with n = 40 and n = 50 almost coincide completely. Therefore, n = 40 is taken in this paper.

4.3. Validation of the algorithm and model

In order to validate correctness of the algorithm, the parameters from the literature (Zhang
and Miska, 2005) are substituted into Eq. (4.2), and the first two eigenfrequencies are obtained,
as shown in Fig. 3. For the first eigenfrequency, when the flow rate Ui increases to 2.16m/s, its
imaginary part decreases to zero, and begins to bluckle. For the second eigenfrequency, when
the flow rate increases to 19.89m/s, its real part is equal to zero, and flutter instability occurs.
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Fig. 2. Complex frequencies vs. flow velocities Ui with different n: (a) image parts of complex
frequencies Im(ωn); (b) real parts of complex frequencies Re (ωn)

Fig. 3. The first two eigenfrequencies with the increasing flow rate Ui

So the critical flow rate of the first and second mode are 2.16m/s and 19.89m/s. Compared
with the results from literature (Zhang and Miska, 2005), the relative errors of the critical flow
rate are 1.4% and 3.9%, respectively. So the results are in good agreement with the literature
(Zhang and Miska, 2005).

4.4. Effect of parameters on stability

The parameters, such as delivery capacity of the drilling fluid, WOB, drilling fluid density and
wellbore diameter, are all important in drilling operation. Here, the effect of these parameters
on stability of the drillstring system will be analyzed by solving eigenvalues of Eq. (4.2).

To begin with, the influence of the flow rate Ui on system stability is presented by two
examples. Firstly, the natural frequencies of the first 2 orders that are functions of Ui are
calculated under p = 40 kN, and the result is shown in Fig. 4a. It is found that Im(ωn) decreases
monotonically as Ui increases. When Ui exceeds 42.9m/s, the first natural frequency vanishes
and the system loses its stability by divergence, namely, Ucr = 42.9m/s. Secondly, the case of
p = 65 kN is taken as another example whose result, being very different from Fig. 4a, has been
described in Fig. 2 (see lines corresponding to n = 40). Under the condition of Ui < 17.3m/s or
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Ui > 34.4m/s, the first natural frequency vanishes and the system is subject to divergence. In
the range of Ui = 17.3-34.4 m/s, the first natural frequency increases firstly and then decreases
along with increasing Ui, and the system is stable. Different trends between these two examples
could be explained by reference to Eq. (2.3): the dimensionless flow rates (ui and uo) appear
not only in the damping term, but also in the stiffness term. With an increase in the delivery
rate, the contribution of the delivery rate to damping and stiffness changes, and stability of the
system will change as a result. This phenomenon will be illustrated further in Fig. 5.

Fig. 4. The natural frequencies, Im (ωn), as a function: (a) of flow velocity Ui for p = 40,
(b) of WOB p for Ui = 5m/s

Fig. 5. Stable region in (Ui-p) parameter plane; (b) is partial enlargement drawing of (a)

In addition, the influence of WOB p on stability is given in Fig. 4b which presents relation-
ships between natural frequencies of the first 2 modes and p for Ui = 5m/s. With p increasing,
the natural frequencies diminish gradually and divergence instability eventually occurs. The
critical WOB of instability pcr that corresponds to the first mode is 63.0 kN.
The effect of the flow rate and WOB on stability could also be shown in the parameter plane

of Ui and p as Fig. 5, which indicates that the stable interval of Ui diminishes as p increases,
namely, the higher the drilling pressure is, the more easily the system loses its stability. The effect
of Ui on stability varies for different p. Under the condition of p < 63.0 kN, the system varies from
the stable region to an unstable region along with increasing Ui. When p is between 63.0 kN and
68.0 kN, the dynamic response of the drillstring system presents a process of “unstable-stable-
-unstable” as Ui increases from zero (see Fig. 5b, the dash line of p = 65 kN corresponds to Fig. 2).
It indicates that the flow rate can promote stability under certain conditions. For p > 68.0 kN,
the stability interval disappears and the system is in the unstable state for any velocities. The
value of 68.0 kN is called as “pressure limit of stability” and expressed as Pmax.
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Finally, the stiffness parameter of the stabilizer kstab, the wellbore diameter Dw and drilling
fluid density ρ also affect stability of the drillstring system.
The stiffness parameter of the stabilizer can be different for different operating conditions,

and determination of the accuracy of the value is relatively difficult. When kstab is small, it can
be used as a soft ground, and when it is large, it can be used as a hard formation. The stabilizer
can be a fixed hinge if kstab is plenty large. The effect of different kstab on stability regions is
shown in Fig. 6a. The stability regions gradually increase with the increasing kstab, and when
kstab = 17.5 · 109 N/m and 17.5 · 106N/m, the stability regions are almost intact, which shows
that the stabilizer is regarded as the fixed hinge in this case. In the case of kstab = 17.5 ·106 N/m,
the stability regions are only increased by about 10% compared with the case of kstab = 0N/m,
and the trend of the critical flow rate as a fuction of p is the same for different kstab. So the
stabilizer is ignored in the flowing analysis to save computer cost.

Fig. 6. Stable region in (Ui-p) plane for different: (a) kstab, (b) Dw

A larger Dw that corresponds to a larger cross-sectional area of the annulus means lower
velocity of the annular fluid. Figure 6b shows stability regions in the (Ui-p) plane for differentDw.
For a smaller value of Dw, the stability region becomes narrower and Pmax increases. when Dw is
0.2794m, the critical velocity Ucr decreases monotonically as p is increasing, and Pmax = 63.0 kN
appears at the zero flow rate. In both cases of Dw = 0.2415m and 0.2127m, Pmax appears at a
non-zero velocity, and the phenomenon of “unstable-stable-unstable” appears when Ui increases
from zero under the condition of 63 kN < p < Pmax. Figure 7 presents the effect of fluid density ρ
on stability regions in the (Ui-p) plane. Larger ρ leads to a lesser buoyant weight of the drillstring.
With an increase of ρ, Ucr decreases and Pmax increases.

Fig. 7. Stable region in the (Ui-p) plane for different ρ
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5. Stability analysis under fluctuating WOB

The fluctuating WOB could be divided into two parts: the average pressure p and harmonic
pressure pµ cosωt. Since the harmonic part exists, the dynamical system being nonautonomous
with periodical internal variables, cannot be solved by the method of multiple scales for its
significant gravitation effect. Here, Bolotin’s method is adopted (Päıdoussis and Issid, 1974).

5.1. Bolotin’s method

Bolotin’s method which is a kind of series method used to solve ordinary differential equa-
tions defines two types of parametric instabilities as the primary and secondary instability.
For an undamped beam subjected to a harmonic end load, the primary instabilities occur at
2ω0n/ω = 1, 3, 5, . . ., where ω0n are the natural frequencies of the beam and ω is the dimen-
sionless frequency of WOB. The secondary instabilities occur at 2ω0n/ω = 2, 4, 6, . . .. Of all
these cases the most important is 2ω0n/ω = 1 and 2, the so-called principal primary instability
and principal secondary instability, respectively. Solving Eq. (3.2) by Bolotin’s method, one can
obtain the primary and secondary instability of the drillstring system under fluctuating WOB.
To obtain the primary instabilities, the vector q of Eq. (3.2) is written as

q =
∑

k=1,3,5,...

[

ak sin
(1

2
kωτ
)

+ bk cos
(1

2
kωτ
)]

(5.1)

where ak and bk are all n-dimensional vectors. Substituting expression (5.1) into Eq. (3.2), one
gets linear homogeneous equations for ak and bk

(

−ω
2

4
I+K

)

a1 −
ω

2
Cb1 +

1

2
µΓBa3 −

1

2
µΓBa1 = 0

(

−k
2ω2

4
I+K

)

ak +
1

2
µΓB(ak−2 + ak+2)−

kω

2
bk = 0 k = 3, 5, 7, . . .

ω

2
Ca1 +

(

−ω
2

4
I+K

)

b1 +
1

2
µΓBb3 +

1

2
µΓBb1 = 0

kω

2
Cak +

(

−k
2ω2

4
I+K

)

bk +
1

2
µΓB(bk−2 + bk+2) = 0 k = 3, 5, 7, . . .

(5.2)

To obtain the secondary instabilities, the q is expressed as

q =
∑

k=2,4,6,...

[

ak sin
(1

2
kωτ
)

+ bk cos
(1

2
kωτ
)]

(5.3)

Substituting Eq. (5.3) into Eq. (3.2) yields Eq. (5.4) similarly

(−ω2I+K)a2 +
1

2
µΓBa4 − ωCb2 = 0

(

−k
2ω2

4
I+K

)

ak +
1

2
µΓB(ak−2 + ak+2)−

kω

2
Cbk = 0 k = 4, 6, 8, . . .

Kb0 +
1

2
µΓBb2 = 0

ωCa2 + (−ω2I+K)b2 + µΓBb0 +
1

2
µΓBb4 = 0

kω

2
Cak +

(

−k
2ω2

4
I+K

)

bk + µΓB(bk−2 + bk+2) = 0 k = 4, 6, 8, . . .

(5.4)

Only when the determinants of the coefficient matrices are equal to zero, which are presented
as Eq. (5.5), do the linear homogeneous equations have non-zero solutions. Solving Eqs. (5.5)
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yields the critical frequencies that indicate the boundaries of the unstable regions. The coefficient
matrices are of infinite orders, whose determinant is convergent, absolutely (Päıdoussis and Issid,
1974). One could obtain the critical frequencies with adequate precision by setting k = 1 for the
primary region and k = 2 for the secondary one
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(5.5)

The truncated number n of Galerkin modal functions also affects results of Eqs. (5.5). Denot-
ing ω01 as the first natural frequency at the zero flow and zero drilling pressure, Table 1 shows
the calculated relative critical frequenciesω/ω01 corresponding to different n for k = 1 and k = 2,
respectively. It is found that ω/ω01 converges gradually as n increases. For k = 1, the results
with n = 30 and n = 35 have no difference, so n is taken as 30. Similarly, n is taken as 20 for
k = 2. These two truncated numbers will be used in the following analysis.

Table 1. The calculated results of ω/ω01 with different n

k = 1
n

10 20 25 30 35

ω/ω01 1.9425 1.9406 1.9405 1.9404 1.9404

k = 2
n

10 20 25 30 35

ω/ω01 0.9770 0.9713 0.9705 0.9703 0.9703

5.2. Stability analysis

The dynamic stability of the system will be analyzed under the condition of p = 40 kN and
Ui = 5m/s, and other parameters are the same as in Section 4. The boundaries of primary and
secondary instability regions associated with the first four modes could be obtained by solving
Eqs. (5.5) as the amplitude parameter µ of WOB varies between 0 and 1 (see Fig. 8). When
µ increases to 0.06, 0.12, 0.16 and 0.24 from zero, the primary instability regions of the first
four modes appear, in turn, at ω/ω01 = 1.7, 3.5, 5.3 and 7, respectively. The interval of ω/ω01
corresponding to the instability region increases along with increasing µ. Therefore, the greater
the fluctuating amplitude of WOB is, the easier the system is apt to be unstable. Compared
with the primary instability regions, the regions of secondary instability are much smaller, and
the majority of them are located within the primary instability areas of the first and second
modes. As a result, the effect of p, Ui, ρ and Dw on the stability will be described only by the
first two modes of the primary instability.

5.3. Effect of parameters on stability

The primary instability regions of the first two modes are presented in the (ω/ω01-µ) plane.
Figure 9a shows the effect of the average WOB p on the instability of the drillstring system.
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Fig. 8. Parametric instability boundaries; the solid lines are principal primary instability boundaries
while the dash lines are principal secondary instability boundaries

Fig. 9. The primary instability boundaries of the first two modes: (a) for four values of p,
(b) for five values of Ui

Fig. 10. Primary instability boundaries of the first two modes: (a) for three values of Dw,
(b) for three values of ρ

As p increases, the instability regions move downwards and left, which means a decrease of the
critical frequencies ω/ω01 and µ along with the increasing p. It is also noted that the regions
of instability are larger for higher p. Therefore, the system with higher p is more apt to be
unstability.
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The instability boundaries for five values of the flow rate Ui are illustrated in Fig. 9b, where
the left most points of the curves for each mode almost coincide, and instability regions are more
extensive at higher flow rates. It is evident that larger Ui leads to poor dynamic stability.
Increasing the borehole diameter Dw will reduce the velocity of the annular fluid. The im-

pact of Dw on parametric instability of the system is shown in Fig. 10a. As Dw increases, the
instability regions become smaller. It means that the higher is the annulus flow velocity, the
worse stability is. This result is somewhat similar to Fig. 9b. In other words, delivery capacity
destabilizes the drillstring system loaded by the harmonic WOB.
Figure 10b shows the effect of fluid density ρ, which influences the buoyant weight of the

drillstring and hydrodynamic forces on the stability of the system. It is noted that the instability
regions move upwards as ρ increases. It reflects that the critical frequency increases with larger ρ,
but not very seriously.

6. Conclusion

The dynamic stability of the drillstring system that is modeled by a simply supported pipe con-
veying drilling mud inside and outside the drillstring, both with constant WOB and fluctuating
WOB, is explored, and the following conclusions have been drawn.

1) For the drilling process under constant WOB, the WOB is the driving force of destabi-
lization of the system, whereas the flow rate, which affects stiffness and damping of the
system simultaneously, plays a complex role. Generally, the system is subject to diver-
gence at higher flow rates, but under a certain combination of parameters, the internal
fluid velocity Ui stabilizes the drillstring. In addition, the ranges of stable regions become
broader with increasing the annulus area, and the stable regions move towards lower Ui
and higher p as the fluid density increases.

2) Under the fluctuating WOB, the drilling parameters, including the average value and fluc-
tuating amplitude of the WOB and the delivery capacity of drilling fluid, are all driving
forces of instability. As the fluid density increases, stability of the drillstring system de-
creases, but this effect is small.
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